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List comprehensions
• A list comprehension is a simple and concise way to 

create lists
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List comprehensions
• A list comprehension is a simple and concise way to 

create lists

Example: compute a list of squares of numbers
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list comprehension



Basic structure

[ expr for item in some_list if cond ]

new_list = []
for item in some_list:

if cond:
new_list.append(expr)
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filter
(optional)

º



Example 1
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Example 1
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using list comprehensions



EXERCISE
Use list comprehensions to create the following lists:

a) A list of even numbers from 2 to 100

a) The list of elements of arglist that are divisible by 3
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Example 2
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>>> import string
>>> 
>>> #strip punctuation from around words in a list
>>> def strip_punctuation(wordlist):

puncts = string.punctuation
return [wd.strip(puncts) for wd in wordlist]

>>> wordlist = "Look!   !!Here's--> punctuation:!@#$%".split()
>>> wordlist
['Look!', "!!Here's-->", 'punctuation:!@#$%']
>>> 
>>> strip_punctuation(wordlist)
['Look', "Here's", 'punctuation']



EXERCISE
Use a list comprehension to create a list of the 
elements of alist that are at index positions that are 
divisible by 3.
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EXERCISE-sol
Use a list comprehension to create a list of the 
elements of alist that are at index positions that are 
divisible by 3.

[ alist[i] for i in range(len(alist)) if i % 3 == 0]
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style considerations
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Style considerations
• Use loops for:

‒ code that has side effects, i.e., does I/O or modifies 
other objects

• Use list comprehensions for:
‒ creating lists 

o using code that does not have side effects 

• Avoid long or nested list comprehensions
‒ these can be hard to read and understand
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Exercise – ICA-40
Do all problems.
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