
CSc 120
Introduction to Computer

Programming II

14: List Comprehensions

List comprehensions
• A list comprehension is a simple and concise way to

create lists

2

List comprehensions
• A list comprehension is a simple and concise way to

create lists

Example: compute a list of squares of numbers

3

list comprehension

Basic structure

[expr for item in some_list if cond]

new_list = []
for item in some_list:

if cond:
new_list.append(expr)

4

filter
(optional)

º

Example 1

5

Example 1

6

using list comprehensions

EXERCISE
Use list comprehensions to create the following lists:

a) A list of even numbers from 2 to 100

a) The list of elements of arglist that are divisible by 3

7

Example 2

9

>>> import string
>>>
>>> #strip punctuation from around words in a list
>>> def strip_punctuation(wordlist):

puncts = string.punctuation
return [wd.strip(puncts) for wd in wordlist]

>>> wordlist = "Look! !!Here's--> punctuation:!@#$%".split()
>>> wordlist
['Look!', "!!Here's-->", 'punctuation:!@#$%']
>>>
>>> strip_punctuation(wordlist)
['Look', "Here's", 'punctuation']

EXERCISE
Use a list comprehension to create a list of the
elements of alist that are at index positions that are
divisible by 3.

10

EXERCISE-sol
Use a list comprehension to create a list of the
elements of alist that are at index positions that are
divisible by 3.

[alist[i] for i in range(len(alist)) if i % 3 == 0]

11

style considerations

12

Style considerations
• Use loops for:

‒ code that has side effects, i.e., does I/O or modifies
other objects

• Use list comprehensions for:
‒ creating lists

o using code that does not have side effects

• Avoid long or nested list comprehensions
‒ these can be hard to read and understand

13

X

Exercise – ICA-40
Do all problems.

14

