
Lab 7 Problems

Problem 1 The following recursive function reverse_string(s) takes a string s as an argument
and returns a new string that is a reverse of s.

def reverse_string(s):
 if len(s) == 0:
 return
 return s[-1] + reverse_string(s[:-1])

Step 1: Type in the code for the function and run it.

a) What error do you get?

b) What is the cause of the error?

Step 2: Fix the code and run it again. Write out the arguments and the return values for each call for this
example call:

reverse_string("beak")

Problem 2 Write a recursive function count_occurrences(alist, value) that counts the
number of times value occurs in a list. For example,

count_occurrences([2, 8, 2, 6, 2, 9], 2)returns 3.

Write your code below or in your IDE.

Problem 3 In a recent ICA, you wrote a recursive function sum_diag(grid) that returns the sum of
the diagonal from upper left to bottom right in a grid, i.e., it sums grid[0][0], grid[1][1], and
so on. Slicing the 2-d list grid on each recursive call handles going to the next row, but to handle the
change in the column, we used a helper function to introduce an additional parameter col for the column.
Here is the solution:

def sum_diag(grid): # the original function

 return sum_diag_helper(grid, 0)

def sum_diag_helper(grid, col): # the helper function

 if grid == []:
 return 0
 else:
 return grid[0][col] + sum_diag_helper(grid[1:], col + 1)

Step 1: Circle the first call to the helper function above (where the argument 0 is provided).

Step 2: Use a helper function to write the code for the following problem: write a recursive function
times_pos(alist) that takes the list alist as an argument and returns a new list consisting of the
elements of alist multiplied by the position number of the element. For example, the call

times_pos([2,4,6,8,10]) returns [0, 4, 12, 24, 40].

Write your code below or in your IDE.

Problem 4 In this problem, you will be working with the LinkedList and Node classes, however, the
Node class has been modified to include an attribute than refers to another LinkedList object:

class Node:
 def __init__(self, value):
 self._value = value
 self._inner_list = LinkedList()
 self._next = None

 def get_inner_list(self):
 return self._inner_list

For example, for the code below,

n = Node(14)

the diagram for the variable n and the Node object would look like this:

Step 1: Given the code definition of the Node class above, draw the diagram of my_ll and n after the
following two lines have been executed:

 my_ll = LinkedList()
 n = Node(4)

Step 2: Draw the diagram again after the following two lines have been executed:

n.get_inner_list().add(Node(2))

my_ll.add(n)

Step 3: Get the starter code lab7_starter.py from the class website (use the Labs link).

Step 4: Read the code in main and the do the steps in the comments for Steps 4 (a) through (d) in the
main() function.

Step 5: Draw the current diagram for my_ll. (Note: the outer list my_ll should have three nodes; each
of those nodes has an inner list containing one element.)

