
Lab 7 Resource Document: Stack Traces
Python prints a stack trace when it encounters a runtime error. These messages can seem dense,
but have a lot of useful information for debugging.

Here's an example stack trace from an implementation of word_search.py that I wrote:

Note the following features:

1. Traceback (most recent call last): It shows the earliest function call at the top, in this

case main().

2. File "..." line X, in <function>: The rest of the trace shows which functions called each

other leading up to the error. main() called get_diagonal(grid, i), which tried to append

to retlist. It shows which line and where the error occurred.

3. IndexError: list index out of range: We can see that the IndexError occurred when we

attempted to access grid[pos[0]].

The stack trace allows you to follow what happened from the start of your program until the

error occurred. Sometimes, the actual error you need to fix will be at the bottom of the trace—

the issue in the above example was a bad loop condition inside get_diagonal. Other times, a

function in the middle of the trace may cause an error down the line. It's often best to work your

way bottom to top

Recursion

Here's an example of a recursive function with a common error:

And here's the traceback when this code is executed:

With recursive functions, you get a repetitive trace from the function calling itself. What matters
here is that bottom line showing what the error refers to: we're trying to add together an int and a
list when we do that final recursive call. Of course, to fix this, we have to ensure that our base
case returns the same type as our recursive case.

	Lab 7 Resource Document: Stack Traces
	Recursion

